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Recall: message authentication

To autenticate a message m with a shared secret key k ,

• Alice appends to it a tag t = MAC(k ,m);

• upon reception of (m, t), Bob checks whether

t
?
= MAC(k,m).

Provides security against forgery by a malicious third party.



The problem with MACs

Alice and Bob share the exact same capabilities, so this system cannot protect them

against one another.

Forgery:

Bob: ”My name is Alice and I will give 100e to Bob.” 7

Repudiation:

Alice: ”My name is Alice and I will give 100e to Bob.” X

Alice: ”Hey I never said that! It was Bob!” 7



Digital signature provides

• message integrity

• sender authentication

• binding between message and sender

• non-falsification / forgery

• non-repudiation



Applications

• authenticity of official documents

• approval/agreement (contracts)

• software distribution

• financial transactions

• IoT

• . . .

The (cryptographic) notion of digital signature should not be confused with the closely

related (legal) notion of electronic signature (cf. European eIDAS regulation)

https://www.ssi.gouv.fr/administration/reglementation/confiance-numerique/le-reglement-eidas/


Construction idea

Use public-key encryption ”in reverse”!

• private encryption (signing) key kpriv = ke

• public decryption (verification) key kpub = kd

only Alice can sign, anyone can verify



Protocol (1st try)

To sign a message m with private key ke :

• Alice appends to it s = E (ke ,m).

Upon reception of a pair (m, s):

• Bob checks with associated public key whether

D(kd , s)
?
= m.



Problems

• Asymmetric ciphers are inherently slow:

problematic for long messages

• Need to use ”multiple blocks” version of encryption

• Signed message is twice as long as original message!



Solution: sign a hash

To sign a message m with private key ke :

• Alice computes h = H(m);

• appends s = E (ke , h) to m.

Upon reception of a pair (m, s):

• Bob checks with associated public key whether

D(kd , s)
?
= H(m).



To sum up:

Digital signatures are (usually) built from a hash function + asymmetric encryption.

• Only Alice can sign with private ke .

• Anyone can check that the signature is genuine using public kd .

• Footprint is minimal (computation time + size of signed message).

Note: any weakness in the hash or encryption directly impacts the security of the

signature.
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In practice

Most digital signature schemes in use today are based on either RSA or DLP ciphers.

Warning 1

Signatures do nothing to conceal the content of the message; encryption needs to be

used as well.

Warning 2

Never use the same key pairs for encryption and signature!



RSA Probabilistic Signature Standard

Specified in PKCS #1

• H is taken to be one of the flavors of SHA-2

• The actual value that is signed incorporates some random salt

• Signature (encryption) can be sped up using CRT

• Verification (decryption) can be sped up by using a small Fermat prime

https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
http://en.wikipedia.org/wiki/Fermat_number


RSA-PSS protocol (1/2)

To sign a message m with public n, d , private e, Alice:

• computes h = SHA2(m)

• chooses random salt k

• applies padding M = T (k , h) ∈ [[0, n[[

• appends s :≡
n

Me



RSA-PSS protocol (2/2)

Upon reception of a pair (m, s), Bob:

• computes h = SHA2(m)

• decrypts M ≡
n

sd

• recovers random salt k from M

• checks whether

M
?
= T (k , h)



Digital Signature Standard

In the US, NIST specifies two other signature schemes in the Digital Signature

Standard:

• DSA (variant of mod n ElGamal)

• ECDSA (using elliptic curves)

(Probabilistic padding not needed).

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf


DSA (1/2)

Public parameters: (can be reused)

• a medium-sized prime q ≈ 2256

• a large prime p ≈ 22048 such that q | p − 1

• an integer g of multiplicative order q mod p:

gq ≡
p

1

Keys:

• private x ∈ ]]0, q[[

• public y ≡
p

g x



DSA (2/2)

Signature:

• Choose random k ∈ ]]0, q[[

• Compute r = (gk % p) % q

• Compute s ≡
q

k−1 · (H(m) + xr)

Verification: upon reception of (m, (r , s)),

• Compute t ≡
q

s−1

• Verify if (
(gH(m)y r )t % p

)
% q

?
= r .



Schnorr signatures

(EC)DSA signatures are more compact than RSA

but: no formal security proof exists!

The crypto community today favors using some form of Schnorr signature

e.g. Edwards-curve Digital Signature Algorithm (Ed25519)

with actual formal reduction to hardness of DLP (Seurin 2012).

https://en.wikipedia.org/wiki/EdDSA


Schnorr signature algorithm (1/2)

Parameters:

• a group G of prime order q for which the DLP is hard

• a generator g of G

• a secure hash function H : {0, 1}∗ → [[0, q[[

Keys:

• private x ∈ ]]0, q[[

• public y = g x .



Schnorr signature algorithm (2/2)

Signature of a message m:

• choose random k ∈ ]]0, q[[

• compute e = H(gk ||m), s = k − xe

• signature is (s, e)

Verification:

• Check if H(g sy e ||m)
?
= e
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The problem with public keys

Bob can check Alice’s signature provided he has her public key.

Alice can broadcast it publicly...

...but how to prevent man-in-the-middle attacks?

Back to square one! (again)



Certificate

A trusted third party (Trent) certifies the pair (Alice, kd) by broadcasting:

”I, Trent, certify that Alice’s public key is kd .”



Revised protocol

To sign a message m, Alice:

• computes s = S(kpriv,m)

• sends (m, s) along with her certificate for kpub

Bob:

• checks that the certificate is valid

• verifies the signature using kpub



Trust management

Two main approaches:

• web of trust (e.g. PGP)

• public-key infrastructure (e.g. X.509):

chain of certification authorities (CAs), revocation lists . . .

NB: Certain fundamental problems remain (WYSIWYS?) for electronic signature

(Cours légal en France depuis 2000)

http://en.wikipedia.org/wiki/Web_of_trust
http://en.wikipedia.org/wiki/X.509
https://www.schneier.com/crypto-gram-0011.html#1
http://www.ssi.gouv.fr/fr/reglementation-ssi/signature-electronique/


Trusted top level CAs

Linux: /etc/ssl/certs

Win10: certmgr.msc
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