
Cryptography

5 – Digital signatures

G. Chênevert

November 4, 2019

mailto:gabriel.chenevert@yncrea.fr

Today

Concept

Implementation

Certificates

Recall: message authentication

To autenticate a message m with a shared secret key k ,

• Alice appends to it a tag t = MAC(k ,m);

• upon reception of (m, t), Bob checks whether

t
?
= MAC(k,m).

Provides security against forgery by a malicious third party.

The problem with MACs

Alice and Bob share the exact same capabilities, so this system cannot protect them

against one another.

Forgery:

Bob: ”My name is Alice and I will give 100e to Bob.” 7

Repudiation:

Alice: ”My name is Alice and I will give 100e to Bob.” X

Alice: ”Hey I never said that! It was Bob!” 7

Digital signature provides

• message integrity

• sender authentication

• binding between message and sender

• non-falsification / forgery

• non-repudiation

Applications

• authenticity of official documents

• approval/agreement (contracts)

• software distribution

• financial transactions

• IoT

• . . .

The (cryptographic) notion of digital signature should not be confused with the closely

related (legal) notion of electronic signature (cf. European eIDAS regulation)

https://www.ssi.gouv.fr/administration/reglementation/confiance-numerique/le-reglement-eidas/

Construction idea

Use public-key encryption ”in reverse”!

• private encryption (signing) key kpriv = ke

• public decryption (verification) key kpub = kd

only Alice can sign, anyone can verify

Protocol (1st try)

To sign a message m with private key ke :

• Alice appends to it s = E (ke ,m).

Upon reception of a pair (m, s):

• Bob checks with associated public key whether

D(kd , s)
?
= m.

Problems

• Asymmetric ciphers are inherently slow:

problematic for long messages

• Need to use ”multiple blocks” version of encryption

• Signed message is twice as long as original message!

Solution: sign a hash

To sign a message m with private key ke :

• Alice computes h = H(m);

• appends s = E (ke , h) to m.

Upon reception of a pair (m, s):

• Bob checks with associated public key whether

D(kd , s)
?
= H(m).

To sum up:

Digital signatures are (usually) built from a hash function + asymmetric encryption.

• Only Alice can sign with private ke .

• Anyone can check that the signature is genuine using public kd .

• Footprint is minimal (computation time + size of signed message).

Note: any weakness in the hash or encryption directly impacts the security of the

signature.

Today

Concept

Implementation

Certificates

In practice

Most digital signature schemes in use today are based on either RSA or DLP ciphers.

Warning 1

Signatures do nothing to conceal the content of the message; encryption needs to be

used as well.

Warning 2

Never use the same key pairs for encryption and signature!

RSA Probabilistic Signature Standard

Specified in PKCS #1

• H is taken to be one of the flavors of SHA-2

• The actual value that is signed incorporates some random salt

• Signature (encryption) can be sped up using CRT

• Verification (decryption) can be sped up by using a small Fermat prime

https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
http://en.wikipedia.org/wiki/Fermat_number

RSA-PSS protocol (1/2)

To sign a message m with public n, d , private e, Alice:

• computes h = SHA2(m)

• chooses random salt k

• applies padding M = T (k , h) ∈ [[0, n[[

• appends s :≡
n

Me

RSA-PSS protocol (2/2)

Upon reception of a pair (m, s), Bob:

• computes h = SHA2(m)

• decrypts M ≡
n

sd

• recovers random salt k from M

• checks whether

M
?
= T (k , h)

Digital Signature Standard

In the US, NIST specifies two other signature schemes in the Digital Signature

Standard:

• DSA (variant of mod n ElGamal)

• ECDSA (using elliptic curves)

(Probabilistic padding not needed).

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

DSA (1/2)

Public parameters: (can be reused)

• a medium-sized prime q ≈ 2256

• a large prime p ≈ 22048 such that q | p − 1

• an integer g of multiplicative order q mod p:

gq ≡
p

1

Keys:

• private x ∈]]0, q[[

• public y ≡
p

g x

DSA (2/2)

Signature:

• Choose random k ∈]]0, q[[

• Compute r = (gk % p) % q

• Compute s ≡
q

k−1 · (H(m) + xr)

Verification: upon reception of (m, (r , s)),

• Compute t ≡
q

s−1

• Verify if (
(gH(m)y r)t % p

)
% q

?
= r .

Schnorr signatures

(EC)DSA signatures are more compact than RSA

but: no formal security proof exists!

The crypto community today favors using some form of Schnorr signature

e.g. Edwards-curve Digital Signature Algorithm (Ed25519)

with actual formal reduction to hardness of DLP (Seurin 2012).

https://en.wikipedia.org/wiki/EdDSA

Schnorr signature algorithm (1/2)

Parameters:

• a group G of prime order q for which the DLP is hard

• a generator g of G

• a secure hash function H : {0, 1}∗ → [[0, q[[

Keys:

• private x ∈]]0, q[[

• public y = g x .

Schnorr signature algorithm (2/2)

Signature of a message m:

• choose random k ∈]]0, q[[

• compute e = H(gk ||m), s = k − xe

• signature is (s, e)

Verification:

• Check if H(g sy e ||m)
?
= e

Today

Concept

Implementation

Certificates

The problem with public keys

Bob can check Alice’s signature provided he has her public key.

Alice can broadcast it publicly...

...but how to prevent man-in-the-middle attacks?

Back to square one! (again)

Certificate

A trusted third party (Trent) certifies the pair (Alice, kd) by broadcasting:

”I, Trent, certify that Alice’s public key is kd .”

Revised protocol

To sign a message m, Alice:

• computes s = S(kpriv,m)

• sends (m, s) along with her certificate for kpub

Bob:

• checks that the certificate is valid

• verifies the signature using kpub

Trust management

Two main approaches:

• web of trust (e.g. PGP)

• public-key infrastructure (e.g. X.509):

chain of certification authorities (CAs), revocation lists . . .

NB: Certain fundamental problems remain (WYSIWYS?) for electronic signature

(Cours légal en France depuis 2000)

http://en.wikipedia.org/wiki/Web_of_trust
http://en.wikipedia.org/wiki/X.509
https://www.schneier.com/crypto-gram-0011.html#1
http://www.ssi.gouv.fr/fr/reglementation-ssi/signature-electronique/

Trusted top level CAs

Linux: /etc/ssl/certs

Win10: certmgr.msc

Browsers:

	Concept
	Implementation
	Certificates

